Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region.
نویسندگان
چکیده
The spinal neurons involved in the control of locomotion in mammals have not been identified, and a major step that is necessary for this purpose is to determine where these cells are likely to be located. The principal objective of this study was to localize lumbar spinal interneurons activated by stimulation of the mesencephalic locomotor region (MLR) of the cat. For this purpose, extracellular recordings of MLR-evoked cord dorsum and intraspinal field potentials were obtained from the lumbosacral enlargement during fictive locomotion in the precollicular-postmammillary decerebrate cat preparation. Potentials recorded from the dorsal surface of the cord between the third lumbar (L3) and first sacral (S1) segments typically showed four short-latency positive waves (P1-P4). These P-waves were largest between the L4-L6 segments. The amplitude of the P2-4 waves increased with the appearance of locomotion and displayed rhythmic modulation during the locomotor step cycle. Microelectrode recordings from the L4-L7 spinal segments during fictive locomotion revealed the presence of both positive and negative short-latency MLR-evoked intraspinal field potentials, and were used to construct isopotential maps of the evoked potentials. Positive field potentials were observed throughout the dorsal horn of the L4-L7 spinal segments with the largest amplitude potentials occurring in laminae III-VI. Negative field potentials were found in laminae VI-X of the lumbar cord. The shortest latency negative field potentials were observed in lamina VII and at the border between laminae VI and VII and were considered to be evoked monosynaptically from the arrival of the descending volley. Short-latency mono- and disynaptic negative field potentials were also observed in lamina VIII. Longer latency, tri- and polysynaptic field potentials were observed in laminae VII and VIII. Many of the longer latency negative waves observed in laminae VII and VIII followed shorter latency negative potentials recorded from the same location. Laminae VII and VIII negative field potentials were largest in the L5-6 and L4-5 spinal segments, respectively. Negative field potentials were also evoked in the motor nuclei of the L4-7 spinal segments. The segmental latencies for these potentials indicate that they were evoked di- and trisynaptically.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord.
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical...
متن کاملMonoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical ...
متن کاملSerotonergic Innervation of Cat Spinal Locomotor Neurons
Monoamines are strong modulators and/or activators of spinal locomotor networks. 21 Thus, monoaminergic fibers likely contact neurons involved in generating locomotion. The aim 22 of the present study was to investigate the serotonergic innervation of locomotor-activated 23 neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This 24 was determined by immuno...
متن کاملNoradrenergic Innervation of Cat Spinal Locomotor Neurons
Noradrenaline (NA) is a strong modulator and/or activator of spinal locomotor 21 networks. Thus, noradrenergic fibers likely contact neurons involved in generating locomotion. 22 The aim of the present study was to investigate the noradrenergic innervation of functionally23 related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was 24 accomplished by immunohistochemica...
متن کاملEffect of Physiological noise on Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field
Introduction: Functional MRI methods have been used to study sensorimotor processing in the brain and the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 3 Pt 2 شماره
صفحات -
تاریخ انتشار 1995